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Abstract

The natural evolution of life seems to proceed through steps characterized by phases of
relatively rapid changes, followed by longer, more stable periods. In the light of the string-
theory derived physical scenario proposed in [1], we discuss how this behaviour can be related
to a sequence of resonances of the energy of natural sources of radiation and absorption
energies of the DNA, responsible for mutagenesis. In a scenario in which these energy scales
run independently as functions of the age of the Universe, the conditions for evolutionary
mutagenesis are satisfied only at discrete points of the time axis, and for a short period,
corresponding to the width of the resonance. We consider in particular the evolution of the
primates through subsequent steps of increasing cranio-facial contraction, and the great Eras
of life (Paleozoic, Mesozoic, Cenozoic), showing that the transitions occur at the predicted
times of resonance.
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Paleontological observations seem to indicate that the evolution of life would not take
place “progressively”, but would be characterized by relatively short periods of “sudden”
mutation, separated by longer, more or less “stable” periods. For instance, it has been
observed that the species of hominids, from the primates to the homo sapiens, is characterized
by an evolution toward an increasing cranio-facial contraction, which makes possible an
expansion of the volume of the brain, and appears to take place at specific periods in which
a big step forward is made, followed by longer periods in which this kind of mutagenesis
seems to be “at rest” [2]. This progressing through “steps” seems in some way to call into
question certain aspects of the Darwin’s theory of the evolution through natural selection.
Why should not all the possible directions, i.e. all the possible mutations, be statistically
generated at the same time? Why should then evolution not be a “continuum” process? This
has even induced to talk about “ontogenesis” for this kind of mutations, and mathematical
models have been investigated, in order to explain this behaviour [3, 4, 5].

We don’t want here to delve into the problematic of the “mechanics” of this progressive
contraction. We are more generally interested in the biophysical dynamics of evolution,
which seems to occur through a sequence of steps forward and rests, and this not only with
regard to the human species, but also more in general to the big Eras of life on the Earth.
In this note, we approach the problem from a point of view inspired by our recent work in
fundamental physics, [1], where we consider the physics arising in the framework of a non-
perturbative string theory scenario. Here we will discuss how the sequence of these steps,
as well as the relatively short duration of the intervals of “rapid” progress of the evolution,
can be explained entirely within the laws of molecular physics and the Darwin’s theory of
natural evolution.

According to [1], all fundamental mass scales mi, as well as the couplings of elementary
particles αj , are expected to mainly run, during the cosmological evolution, as appropriate
roots of the (inverse) age of the Universe. Their dominant behaviour would therefore be of
the type:

mi ∼ 1

T
1

γi

, αj ∼ 1

T
1

γj

, γi, γj > 1 , (0.1)

where T is the age of the Universe, measured in reduced Planck units (the units for which
all the fundamental constants, namely the Planck constant ~, the speed of light c, and the
Planck mass 1/

√
GN are set to 1), and γi, γj are appropriate positive numbers, γi, γj > 1.

As a consequence of 0.1, in first approximation also all atomic and molecular energy scales
run, up to some normalization coefficients, as appropriate powers of the (inverse) age of the
Universe:

Ep ∼ 1

T 1

p

+ O
(

1

T 1

q

)

, p > q > 1 . (0.2)

Of course, in these units the age of the Universe is an adimensional quantity, it is a “pure
number”, so that it must not surprise that an energy can correspond to any power of a time.
In order to obtain something with the dimension of an energy, the r.h.s. of equation 0.2
must be eventually multiplied by the Planck mass times the speed of light to the square.
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Figure 1: The steps of increasing cranio-facial contraction of hominids, according to [2].

At our present time, the rate of variation of couplings, masses, and energies, is very small,
irrelevant for our experience of every day. However, it becomes significant as seen on a
cosmological scale. But its effect is appreciable also at “intermediate” scales, such as those
of the evolution of life, where it can show out in “fine-tuning” effects. Among these are
precisely the cases of natural evolution we are going to discuss.

1 The evolution of Primates

Let’s consider first the example referring to the most recent series of evolutionary mutations:
the evolution of primates along steps of increasing cranio-facial contraction, summarized in
figure 1. It is clear that the duration of these periods increases as we go back in time to
earlier ages, although no simple mathematical relation seems to relate them. Once expressed
in units of the age of the Universe, the periods Tn of the primates-to-human history show a
behaviour much less unfamiliar. Indeed, as we will discuss, they approximately arrange into
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a power series:
Tn ≈ k nq , (1.1)

for some positive numbers k and q, 0 < q < 1, and n running on the natural numbers. What
produces this behaviour? The fact that mutations seem to occur during a very short time,
as compared to the duration of the “stable” phases, recalls the typical width of a resonance
threshold in energy absorption processes. In a quantum system, energy levels are quantized
and in general discrete; this is true at least as long as we consider a bound system and
its binding energies, a situation to which the DNA corresponds with good approximation.
Mutagenesis is a process produced by a change in the DNA structure. At the molecular level,
what happens is that, as a consequence of the absorption of radiation of a certain frequency
(= a certain amount of energy), protons and/or electrons “jump” to different positions, and
form new bonds. Let’s consider to expose the DNA to a certain kind of radiation. The
energy that hits the probe is quantized, and is related to the frequency ν, or the wavelength
λ, of the radiation, according to the Compton law:

Esource = hν =
c

λ
. (1.2)

Also the energy levels of the target molecule are expected to be quantized. Mutation energies
are the subject of several investigations, based on approximations of the DNA sequence as a
crystal, or in general a system bound in a certain region [6, 7, 8, 9]. In general, the absorption
spectrum is discrete:

EDNA = {E(n)} , E(n) = knE0 , (1.3)

where kn is a certain coefficient and n runs on (a subset of) the natural numbers. The
radiation energy 1.2 can be absorbed by the DNA molecule, and produce a change in its
structure, only if it corresponds to one of the discrete levels of its spectrum. In this case, we
have a resonance of the absorption probability:

Esource|res. ∼= E(n)target . (1.4)

A series of evolutionary steps, such as those of the progressive cranio-facial contraction,
corresponds to a specific change of the DNA structure, possibly induced by a change of
one or more proton bonds, that could be a transition of the kind considered in Ref. [6], or
something similar. Which molecular bonds do correspond to a certain degree of contraction
is not known. However, it is not unreasonable to think that the amount of contraction is
related to the number of bonds which underwent an “elementary” transition in the DNA
molecule. Let’s make the hypothesis that this is indeed the case. A larger degree of mutation
would then correspond to a larger number of elementary transitions. In order to induce one
such change, an “elementary step” A, the DNA molecule must absorb an energy:

EA = E(nA) = knA
E0 , (1.5)

for some quantum number n = nA. Let’s suppose that this is precisely induced by the
absorption of energy coming from an external source of radiation. In order to induce the
evolutionary mutation under consideration, we must therefore have:

Esource|res. ∼= E(nA)target . (1.6)
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A discrete series of resonance points along the time axis is only possible if the two energy

scales run as independent functions of time. The amount of change at any such point should
be related to the time width of the resonance.

It is a matter of fact that life is exposed to natural radiation. There are several candidates
for a source of radiation able to induce genetic mutations: the UV radiation, mostly coming
from solar light; the natural radioactivity, and cosmic rays. However, X and cosmic rays are
extremely energetic, and the mutations they induce are in general not “evolutionary” but
“destructive”. The radiation that in practice can induce molecular changes leading to new
forms of life, not just to the death of an organism, is the ultra-violet, and perhaps even less
energetic, radiation. Therefore, the energy spectrum of the source should basically be the
one of the electronic transitions, giving rise to the known atomic emission spectra (in the
case of hydrogen, the Lyman series etc...).

During the cosmological evolution, the spectrum and the amount of this type of radiation
has changed, according to the evolution of the stars and in particular of the solar system.
However, for what matters our problem, restricted to a very recent era of the evolution
of the Universe, it can be considered a sufficiently regular background 1. Were the energy
levels of the source, and of the target DNA, constant, as they are normally assumed to be,
the mutation process would be progressive: the elementary transition would be constantly
related to a certain spectral line, or a bunch of spectral lines. The rate of absorption would
be proportional to the intensity of the source (almost constant), leading to a statistically
continuous increase of the number of changed bonds in the DNA molecule. We would
therefore observe a continuous evolution of primates. In the framework of the physical
scenario discussed in Ref. [1], both the emitted radiation, and the ground energy scale of the
DNA bonds, being functions of elementary energy scales and couplings, have a dominant
behaviour given according to 0.2. This means that, in first approximation, they run as two
independent powers of the age of the Universe:

Esource ≈ ks

T ps

; (1.7)

Etarget ≈ kt

T pt

, (1.8)

where ps, pt are real numbers 0 < (ps, pt) < 1, and ks, kt are coefficients that collect
the contribution of symmetry factors and encode the dependence on the quantum numbers
labelling the energy levels. At a generic time T , the radiated energy doesn’t correspond to
any energy gap of the target. Let’s suppose that at a certain age Ti we have a resonance
with some spectral line of the source:

E(nA) ≈ Esource(n, m) , (1.9)

1We refer here to the frequencies of the spectrum, and in general the cosmological running of the funda-

mental physical parameters. We don’t consider variations due, for instance, to the solar activity, that don’t

affect these properties. We will comment about these effects in section 3.
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where (n, m) is a shorthand notation that indicates the quantum numbers of the two energy
levels involved in the transition producing the radiation in the source. When 1.9 is satis-
fied, energy can be absorbed, making possible for the system to undergo a class of genetic
mutations, corresponding to new possible DNA molecular changes. Statistically, in a short
time, corresponding to the width of the resonance, all possible mutations are tried out. The
maximal transition probability is attained at the pick of the resonance. Out of this point, the
probability rapidly decays, at a speed depending on the characteristic width of emission and
absorption spectra. In any case, after a “short” time, these transitions are no more possible
(i.e. they are extremely suppressed), and the rate of the mutagenesis process drops down
dramatically. Natural selection will then decide which one(s) among all the mutations will
survive. The system will then “stabilize” until a new resonance threshold opens up. Suppose
this was a facial bone contraction enabling a larger brain volume; we get a certain amount of
contraction-inducing transitions (i.e. a certain amount of changed DNA bonds), depending
on the width of the resonance window. Then the process stops till the new resonance. This
occurs when the same kind of molecular transitions are induced by the next spectral line
that turns out to meet the condition 1.9. If a larger brain is a mutation favoured by natural
selection also at later times, then, at the next resonance time, Nature will favour again the
same kind of transition; the suspended process of contraction will be resumed and progress
for another while, leading to the birth of species of primates with a still larger brain.

We can give a rough estimate of the separation between subsequent resonance times. First
of all, let’s see what is the order of magnitude we should expect for the exponents ps and pt

of eqs. 1.7 and 1.8. For the emission scale, we must consider that, in first approximation,
the atomic energy levels are given as some numbers multiplied by the Rydberg constant R.
This is strictly true only in the simplest case, the hydrogen atom, in which case the energy
levels are given by:

Esource(n, m) = hν = R

(

1

m2
− 1

n2

)

, (1.10)

where:
R ≈ R∞ = meα

2/4π (× c/~) , (1.11)

where me is the electron’s mass and α the fine structure constant (in our framework, 0.1, both
of them are not constant). The highest energy, ultra-violet series, is obtained with m = 1
(Lyman series). More in general, the energy levels have more complicated expressions, and,
for heavy elements, with many electrons, one has to consider also relativistic effects scaling as
meα

4. However, as long as we are interested in a rough estimate, and, moreover, considering
that hydrogen is the most common element in the Universe, we will assume here that the
energy levels of our source behave approximately as the Lyman series:

Esource ≈ R∞

(

1 − 1

n2

)

. (1.12)

For the target DNA molecule, the energy levels of interest for us are those corresponding
to a transition not among the positions of the electrons but of the protons (see for instance
Ref. [6, 10]). We don’t know what is the dominant term in the typical energy scale of
mutagenetic transitions. Here we want to leave open the possibility that the fundamental,
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time-dependent part of the binding energies could even be more sensitive to the proton (and
neutron) mass, than to the electron’s mass. Even in the lack of a precise knowledge about
the details of the DNA energies, let’s suppose that their fundamental scale is different from
the one of the source of radiation. In this case, there are two possibilities:

1) The DNA fundamental scale runs slower, and therefore is above, the scale of the source.
In this case, since 1/m2 − 1/n2 < 1, a resonance of the source with the target, 1.9, is
only possible if:

knA
< 1 , (1.13)

with knA
as defined in 1.5. This could be the case if we think that, having to do

with energy levels related to bound states of protons, instead than of electrons, for
what concerns the transitions of interest for us, the fundamental DNA energy scale
E0 = Etarget

0 , defined in 1.5, roughly has a dominant behaviour analogous to the one
of the atomic scale, 1.11, but with the proton mass instead than the electron’s mass.
Namely, it could be something like Etarget

0 ≈ mpα
2.

2) The DNA fundamental scale runs faster, and therefore is below, the scale of the source.
This can be the case if the dependence on the coupling α is realized through a higher
power, something that would reduce the scale to lie below the scale 1.11, by “eating”
the gain due to a higher proton mass, or simply by suppressing by a higher amount
the electron’s mass scale, so that:

Etarget
0 ≈ m(p/e)α

β < Esource , β > 2 , (1.14)

and
knA

> 1 . (1.15)

According to [1], both the electron mass and the electric charge (the fine structure constant
α) run as positive roots of the inverse of the age of the Universe. This means that the
Rydberg constant too scales as a certain root of the age of the Universe. At sufficiently large
times as compared to the Planck length (as is the case of the evolution of life), also the proton
mass roughly scales as a root of the age of the Universe. With reference to equations 1.7
and 1.8, we can therefore identify:

1

T ps

∼ R∞ = R∞(T ) ≡ E0
source(T ) ; (1.16)

1

T pt

∼ E0
target(T ) . (1.17)

For the purpose of the present discussion, there is no fundamental difference between case
(1) or (2). Important for our argument is just that we assume that the DNA ground energy
scale runs with time differently from the scale of the source. However, the choice of the one
or the other of (1) and (2) implies a deep difference of interpretation when we consider larger
time scales, as we will comment at the end of the analysis. If we suppose here that the DNA
fundamental scale runs slower than (and therefore is above) the atomic scale of the source,
case (1), then:

ps > pt . (1.18)
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If instead we suppose that the DNA fundamental scale runs faster than (and therefore is
below) the atomic scale of the source, case (2), we have:

ps < pt . (1.19)

In both cases, the resonance condition 1.9 at a time Ti can be written as:

T ps−pt

i ≈ knA
×
(

1 − 1

n2
i

)

. (1.20)

In case (1) the series of Ti progresses toward higher n (higher energy levels of the source);
in case (2) the series of Ti progresses toward lower n (lower energy levels of the source).

We can work out what is the sequence of times between such resonances, namely, the
differences:

Ti+1 − Ti , Ti+2 − Ti+1 , . . . , (1.21)

by solving the equation 1.20 for ni = n, ni+1 = n+1, ni+2 = n+2, . . . if ps > pt (case 1), and
for ni = n, ni+1 = n− 1, ni+2 = n− 2, . . . if ps < pt (case 2). Let’s introduce q ≡ 1/(pt − ps).
Clearly, |q| > 1; we can then write equation 1.20 as:

Ti ≈
[

knA
×
(

1 − 1

n2
i

)]q

, (1.22)

where the choice of sign of the exponent, ± |q|, depends on whether the physical situation
corresponds to case 1) or 2).

In order to verify our hypothesis, we fit equation 1.22 over five points in the history of
the Universe, corresponding to the turning periods in which mutagenesis has produced the
evolution of the human species from the Australopithecus to the Homo Sapiens, illustrated
in figure 1 of page 2. A first problem of such a numerical computation is that the age of the
Universe is not known exactly. The common estimates range from 11,4 to 15 billion years.
As we discussed in Ref. [1], this value could be an over-estimate: within the framework of [1]
everything seems to be consistent with a slightly shorter age, of around 9,6 billion years. To
be “conservative”, we will assume an age of the Universe of around 10 billion years. After
all, we are here interested in just a rough estimate: other, perhaps larger, inaccuracies could
affect our calculation. A major problem of this interpolation is however that the age of the
universe, measured in reduced Planck units, whatever its value precisely is, is an extremely
huge number: ∼ O(1060). Generic curve-fitting programs are not able to deal with such
numbers, and try to find the best interpolation by reducing the parameters to numbers of
order 1. In order to get rid of big numbers and constant parameters, we plot therefore the
quantity:

y(x) ≡ Tℓ+x

Tℓ
, (1.23)

for the five values from “Simians” to “Sapiens” as given in figure 12. From expression 1.22
we obtain:

Ti+N

Ti

∼=
[

1 − 1
(ni+(sgn q)N)2

1 − 1
n2

i

]q

. (1.24)

2We exclude the edge value corresponding to the prosimians, on which we will comment later.
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For mass and energy scales ranging at present time from the meV to the keV scale, the
exponents ps and pt have typical values in the range ∼ [1

2
— 1

2,4
]. Therefore, |q| ≫ 1.

Limiting the analysis to the first values of N , namely N = 1, 2, 3, 4, 5, we can assume that
N ≪ ni. Under these conditions, expression 1.24 can be approximated by:

y(N) ∼ N c , N = 1, 2, 3 . . . . (1.25)

The small spacing of the periods, Ti+1 −Ti, as compared to the age of the Universe, tells us
that c ≪ 1. This approximation is valid as long as we can write:

N ≈
[

1 − 1
(n+(sgn q)Ñ)2

1 − 1
n2

]

q
c

, Ñ ≡ ± (N − 1) , (1.26)

where we have shifted the value of N on the r.h.s. to Ñ = (N − 1) in order to account
for the fact that the point N = 1 of the interpolation corresponds to the point Ñ = 0 on
the r.h.s. Notice that, while the sequence of numbers of the l.h.s. is increasing over the
natural numbers, on the r.h.s. the sequence runs over the integers. Namely, in the case the
exponent q < −1, the progression is toward decreasing energy levels of the source. This is
obvious, because in this case as time goes by the DNA scale becomes smaller and smaller as
compared to the scale of the source, and the resonance is realized with lower energies of the
source. For n sufficiently large, n > |Ñ |, we can expand the r.h.s. of 1.26:

[

1 − 1
(n+Ñ)2

1 − 1
n2

]

q
c

≈



1 ± 2|Ñ |
n3

+ O





1

n2
×
(

Ñ

n

)2


 . . .





±
|q|
c

. (1.27)

By keeping just the first two terms of the expansion, we have a binomial raised to the power
q/c, and we obtain:

N ≈ 1 +
(q

c

) 2Ñ

n3
+ . . . , (1.28)

where the neglected terms receive a contribution from what we neglected in 1.27, of order:

∼ O





(

Ñ

n2

)2


 ; (1.29)

and from the higher order terms in the binomial expansion:

∼ O





(

2Ñ

n3

)2


 . (1.30)

The term (q/c)2Ñ/n3 in eq. 1.28 is always positive, because either is q > 0, with an increasing
sequence of numbers in the atomic source, Ñ > 0, or is q < 0, and the matching condition is
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realized through a series of decreasing energies of the source, Ñ < 0. In either case, equation
1.28 is approximately solved by:

n ∼
(

2|q|
c

)1/3

. (1.31)

Notice that this kind of approximation may work also for atomic sequences other than
the Lyman series. For a generic 1/m in expression 1.10 instead of 1, we would obtain
an expression analogous to 1.28, simply with rescaled quantities: n → n/m, Ñ → Ñ/m,
resulting in a solution:

n ∼
(

2m2|q|
c

)1/3

. (1.32)

Therefore, we don’t really need to assume that the energies of the source correspond to the
Lyman series. For what we have just discussed, it is reasonable to fit the ratios 1.24, referred
to the five last steps of the evolution of primates, with the curve:

y = a xc . (1.33)

Assuming an age of the universe of ∼ 1010 yr, the values Ti can be approximated as:

T1 ≈ 1, 002 × 1010 yr ;

T2 ≈ 1, 004 × 1010 yr ;

T3 ≈ 1, 0053 × 1010 yr ;

T4 ≈ 1, 00575 × 1010 yr ;

T5 ≈ 1, 00599 × 1010 yr .

(1.34)

By testing several interpolation options, we have seen that it doesn’t make a big difference
to fit the curve 1.33 or to allow for a shift of the x value, namely the curve:

y = a(x − b)c . (1.35)

In any case, the computer solves the problem by finding a very small exponent c, and a
parameter a of order 1. The results are plotted in figures 3 and 4. The curve fitting gives in
the case 1.33:

a = 1.0001526590176328 ;

c = 2.5513644365246610× 10−3 , (1.36)

and, in the case of a shifted power, 1.35:

a = 1.0015925425865762 ;

b = 3.8904855104367164× 10−1 ; (1.37)

c = 1.6992267577200736× 10−3 .

We have tested the interpolation in several ways, and seen that there can be a certain
variation of these parameters, according to the program, and the preferences set for the
interpolation. Their values are therefore only roughly indicative. Within this approximation,
the fit is also not so sensitive to a slight variation of the value of the age of the Universe.
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1.1 The step of Prosimians

At large n, the atomic energy levels get closer and closer to each other (the atomic series
converge to specific frequencies at the limit n → ∞). In the case (2) a larger atomic quantum
number n is found at earlier times. Although the ratio of the fundamental scales, the one
of the source and the one of the DNA bonds under consideration, undergoes an accelerated
increase as time goes by, and therefore the time intervals become shorter, in this case by
going toward the early steps of the sequence of resonances the emitted energies accumulate
to a “continuum”, which could appear as a wider width of a unique resonance. Moreover, in
this regime the time intervals become approximately equal. The condition:

Tn+1 − Tn+1 ≈ Tn+2 − Tn+1 , (1.38)

is in fact approximately equivalent to:
(

1 − 1

(n + 1)2

)p

−
(

1 − 1

n2

)p

≈
(

1 − 1

(n + 2)2

)p

−
(

1 − 1

(n + 1)2

)p

, (1.39)

which is verified up to orders O
[

1
(n+1)2

]

. For lower quantum numbers, the approximation

1.26 neglects smaller terms (1.29, 1.30), but as we approach a larger quantum number, also
the terms neglected in a “linear” approximation 1.38 are small enough. It could be that
the starting point of the “prosimians” period in figure 1, page 2, apparently falling out of
the sequence, precisely lies at the transition between the two kinds of approximations we
are making. Moreover, we can expect that early times are estimated with a lower accuracy.
Does this time lie at the border of the series, so that earlier resonances simply “accumulate”
within the time width of a unique resonance, in such a way that this appears as the first,
“large” resonance time of this kind of mutation?

In the scenario (1), at earlier times the resonance is realized with lower energy levels of
the source. In principle, at very earlier times, the mutation could be induced by atomic
series lower than the Lyman one. Indeed, this series corresponds to the ultraviolet light only
at present time, and according to the scenario (1) at earlier ages of the Universe its energies
were higher as compared with those of the DNA bonds. In this case, it could be that the
step corresponding to the beginning of prosimians corresponds to a value of n at which our
approximation, valid for n sufficiently large, starts to fail, and perhaps corresponds to the
end of a lower series. However, a rough numerical check doesn’t speak in favour of this
hypothesis. If also the beginning of the prosimians era has to be accounted within this series
of evolutionary steps, then the scenario (2) seems to be favoured. In this case, as T increases,
more kinds of molecular transitions become possible, in correspondence to higher molecular
levels becoming accessible to a resonance with the highest atomic series. On the other hand,
the time windows allowed for a mutation become narrower and narrower, because the scale
1/T ps−pt becomes smaller. Owing to the smaller time width, in the average a smaller number
of elementary transitions occur during a resonance. As a consequence, it becomes also smaller
the average increase of the cranio-facial contraction. We should therefore expect that the
evolution of the species tends to “smooth down” toward more frequent but less dramatic
changes.
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Figure 2: The great Eras of the evolution of life.

2 The great Eras of life: the Paleozoic, Mesozoic and Cenozoic steps

The coincidence with a DNA absorption resonance should in principle be at the ground
of evolutionary processes that don’t refer only to the primates: it should work for any
form of life. A problem is to identify which sets of mutations can be grouped into classes
corresponding to the same “basic” transition, and therefore can be arranged along the same
series of neighbouring resonances. It is not hard to imagine that the evolutionary processes
can be distinguished into several classes, according to the kind of molecular transitions they
are controlled by. For instance, by looking at figure 2, one can figure out that the big
subdivision into Paleozoic, Mesozoic and Cenozoic Eras of the life’s evolution should not
mix with the “sub-eras”, the Periods such as the Triassic, the Jurassic etc..., although not
necessarily these periods arrange into subclasses of the main class of transition. This means
that not necessarily “Triassic, Jurassic and Cretaceous” belong to the same main class,
distinguished from the class formed by the set “Cambrian, Ordovician, Silurian, Devonian,
Carboniferous, Permian”. The beginning of the first era, the Paleozoic Era, is the time when
most of the major groups of animals first appear in the fossil record, and is sometimes called
the ”Cambrian Explosion”, because of the relatively short time over which this diversity of
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forms appeared. The Triassic-Permian extinction event too is something that took place
in a relative short interval of time. Lastly, the end of the Mesozoic era is characterized by
the sudden disappearance of dinosaurs. These facts strongly suggest that also the beginning
and the end of these eras were marked by a rapid evolution, as due to the opening of new
resonance thresholds allowing genetic mutation. We may ask whether also these big eras of
the evolution of life follow a power-law sequence.

Taking as “resonance points” the ages corresponding to the beginning of the Paleozoic
era, the transition to the Mesozoic, and from Mesozoic to Cenozoic, we obtain the following
sequence:

T ′
1 ≈ 1, 0000 × 1010 yr ;

T ′
2 ≈ 1, 0350 × 1010 yr ;

T ′
3 ≈ 1, 0535 × 1010 yr , (2.1)

where, for the sake of simplicity, we have rounded the basic time, at the starting point of
the Paleozoic era, to 10 billion years. Actually, in figure 2 there is a fourth age, our present
time. However, although, as discussed above, it seems that we are at turning point of a
new mutation process, this corresponds to a series of resonance energies that, for what we
have seen, it is safe to consider distinguished from the one we are considering now: it starts
later, being entirely included within the Cenozoic era. If the ages 2.1 are going to belong
to a sequence of resonances, this is quite probably another series, which reaches the first
resonance well before. All this to say that from our interpolation we exclude our present
time, that would correspond to:

T ′
4 ≈ 1, 0600× 1010 yr . (2.2)

By proceeding in the same way as in section 1, we plot the y(x) values. Unfortunately, we
have only three data for our interpolation. In any case, the agreement of these data with
the fitting curve, as it can be seen from the diagrams 5 and 6, is nevertheless something
remarkable. The coefficient of the curve 1.33 are now:

a′ = 1.0003919688516729 ;

c′ = 4.7632362251061745× 10−2 , (2.3)

and, for the curve 1.35,

a′ = 1, 0150031204496974 ;

b′ = −3, 2534837743317041× 10−1 ; (2.4)

c′ = 3, 7838527455527071E × 10−2 ,

where the b′ coefficient comes with a negative sign because, for computational reasons, we
shifted the first x value form 0 to 1. Once shifted back, the correct b coefficient is its
complement:

b̄′ = 1 − b′ = 0, 67465162256682959 . (2.5)
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As we already observed, the values of the interpolation coefficients are only approximately
indicative. A really significant output is on the other hand the fact that the coefficients
c′ differ from the c of section 1 by one order of magnitude. This value is higher than the
statistical uncertainty due to the artifacts of the interpolation algorithm. The difference
between the two coefficients is therefore something real, and signals that we are in the
presence of absorption resonances corresponding to a different series and power law. This on
the other hand is precisely what we should expect, on the base of the consideration that the
genetic mutations are of another kind. In this case, they could correspond to different DNA
transition energies. Indeed, the power-law behaviour 1.25 is basically due to the power-law
scaling of the ratio of the basic scales E0

source/E
0
target, and the fact that within a certain

range the quantum energy levels can be approximated by a simple harmonic oscillator-
like expression E(n) ≈ nE0. A quantum system in a box approximately correspond to a
three-dimensional harmonic oscillator. In the case of DNA, we can suppose that it roughly
corresponds to a composite system of many harmonic oscillators. In this way, at the first
order the coefficient kn in 1.3 should be given by:

kn ≈ (n + n0)k0 , (2.6)

where k0 is a scaling factor and n0 is the ground energy, a quantum Casimir effect that, if
in the case of a one-dimensional harmonic oscillator is 1/2, in a complex system consisting
of many harmonic oscillators can be a much larger number. If this is the case, then, keeping
fixed the quantum numbers of the energy of the source, a power-law sequence 1.25 is obtained
as long as we can approximate:

(

n + Ñ + n0

n + n0

)
q
c

≈ 1 +
(q

c

) Ñ

n + n0
+ O

(

Ñ

n + n0

)2

, (2.7)

by retaining only the first two terms, and identifying this time:

q

c
∼ n + n0 , (2.8)

for some n. This is certainly possible, if the ground number n0 is sufficiently large. In
practice, the fact of having a sequence of the type 1.25 is related to the possibility of making
a linear approximation of the spacing of the energy levels, either of the source or of the target,
or both of them, into steps of equal separation, at fixed fundamental energy scale. Once the
running of the latter is taken into account, this translates into a series of the type 1.1.

Under these hypotheses, our analysis tells us that also the three big eras of the evolution,
the Paleozoic, Mesozoic and Cenozoic, fit in a series of resonances. According to these results,
we may ask whether the disappearance of dinosaurs, the event that marks the end of the
Mesozoic era, could be ascribed to the appearance of more evolved competitors, perhaps
coming from a mutation of already existing species. It appears in fact the more and more
clear that their extinction, although it surely took place in a time interval very short as
compared to the length of their period of existence, it has been a process much longer than
what we would have expected if it was produced by some “external” catastrophic event,
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and perhaps better suits to a typical resonance width. We know that eventually mammals
prevailed, although they already existed well before; could it be that a slight mutation finally
gave them the necessary advantage to prevail over dinosaurs?

Plugging the coefficients 2.3 or 2.4 in equation 1.33 (or 1.35 respectively), we can also
speculate about when should the Cenozoic era have an end. Solving 1.33 for x = 4 we obtain
that this should correspond to a time T4 such that:

T4

T1

≈ 1, 069 , (2.9)

and, in the case of the curve 1.35:
T4

T1
≈ 1, 073 . (2.10)

This means in around 9 million years, or 13 in the case of the shifted-power curve 1.35.
These predictions should be taken with a pinch of salt: 9, or 13 millions years, is a huge
number as compared to the human history, but a little one if compared to the length of the
Paleozoic and Mesozoic eras: a difference of a dozen of billions in the estimate of the length
of the Cenozoic era would reflect in an error of just a few percents in the estimate of the
curve. For instance, had we included in the interpolation also our present time, given in 2.2,
as the end point of an era, we would have obtained the following fits:

a′′ = 1.0020109359413651 ;

c′′ = 4.3037554472469014× 10−2 . (2.11)

and

a′′ = 1.0277362232536369 ;

b′′ = −6, 4503233764454060× 10−1 ; (2.12)

c′′ = 2.6484826008431502× 10−2 .

The plots are illustrated in figures 7 and 8 , and show that still the fits would be acceptable.
With these coefficients, the end point of the era starting at our present time, would be
estimated to have its end in some 14 (resp. 15) millions years.

3 Remarks

At this point, several considerations are in order:

• Two different classes of the evolution, namely the one of the big eras of life on the earth,
and the one of the primates, seem to arrange into sequences corresponding to DNA resonance
energies. What distinguishes these two classes? For what we have seen, different series could
be characterized by:

1. A different ratio ks/kt, where ks and kt are given in eqs. 1.7 and 1.8. This means that
the fundamental energy scales of both the source of radiation and the DNA are the
same, but the mutations are produced by transitions corresponding to different energy
levels of the same kind of source of radiation, and/or different energy levels in the DNA
bonds;
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2. A differently running fundamental energy scale, either in the source (eq. 1.16), or in
the target DNA (eq. 1.17), or in both of them. Since the time dependence of these
scales is a consequence of the time dependence of the electron’s mass and charge, a
different time scaling could be the consequence of a different dependence of the energy
levels on these quantities, as well as on other time-dependent parameters, such as the
proton mass. This could be the case of mutations produced by another class of DNA
transitions.

Our approximation, and the small number of experimental data, together with their relative
inaccuracy, don’t allow us to see finer differentiations and discriminate between slightly
different descriptions of the molecular and atomic physics. A more accurate analysis of the
natural evolution could indeed provide some insight in the structure of these energy levels,
and open new perspectives to the investigation of the DNA, providing more insight into its
structure and the dynamics of mutagenesis. A small example of the possibilities offered by
this method is given by our discussion of the scenarios (1) and (2) of the evolution of the
primates. In that case, a conclusion in favour of one of the two possibilities (namely, the
scenario 2) gives non trivial information about the DNA energy scales.

At our present state of knowledge, we cannot decide out of any doubt what distinguishes
the sequence of the human evolution from the larger evolutionary scale of the three main
eras of figure 2. In the case of the evolution of primates, we supposed that the same kind of
molecular transition acts at any time there is a resonance condition. The amount of progress
in the evolution, according to [2] proportional to the amount of cranio-facial contraction,
would then be proportional to the number of occurred molecular transitions in the DNA. A
priori it is not clear whether also in the case of the sequence of the big eras of figure 2, a
unique kind of mutation is at work during all the turning periods. Intuitively, we would say
that in this case it is not, and the fact that the interpolation of these periods with the power-
law curve, figures 5 and 6, gives an even better fit than in the case of Primates, seems to be
rather in favour of the interpretation that in this case the different turning times correspond
to different energy levels of the DNA. The question remains however open; the seek for an
answer could lead to a deeper understanding of the mechanisms of DNA transitions and
their relation to the evolution.

• Obviously, different molecular transitions lead to different mutations. Therefore, the
entire history of the evolution cannot fit into a single series. However, in general not neces-
sarily all the steps of the evolution can be ordered into some series. A simple look at eras,
ages and periods, shows that there are many “irregular” periods, which apparently cannot
be arranged into any ordered sequence. Indeed, there can be a huge variety of combinations
of DNA and source energy levels, leading to different mutations. Owing to the superposition
of different mutations and different periods, the history of the evolution may not look so
easily well ordered.

• The time spread of a mutation period does not depend only on the width of a resonance,
but also on the fact that natural radiation is not “coherent”, it has a certain spread of
frequencies.

• The main source of UV radiation coming to the earth is the sun. Its activity is
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not constant; however, the solar phases involve the amount of produced radiation, not its
being in resonance or not. As a consequence, under the hypothesis that the major cause
of evolutionary mutagenesis is the solar light, what we expect is that variations of the
solar activity affect the evolution process only if they fall within the time window of some
resonance; in this case the mutation process can be accelerated (or slowed down).

We stress that all these considerations make only sense within the scenario proposed
in [1], in which the energy scales depend on time. Only in this case we obtain a discrete
sequence of “resonance” periods. Otherwise, the full spectrum of emission from natural
sources, as well as the complete spectrum of molecular energy levels, would be fixed and
constant all along the history. The conditions for a genetic mutation would then be always
the same, and mutations would be statistically generated without interruption. A step-wise
progress of the evolution would then require completely different explanations.

We stress that, when expressed in terms of the time separating these periods from our
present time, as in figures 1 and 2, the power-law scaling, relation 1.1, cannot be seen.
The situation is similar to the one of the law of a perfect gas, PV = nRT , in which the
proportionality relation between pressure/volume and the temperature is only unveiled when
the latter is expressed in terms of the absolute Kelvin scale. Analogously, here in order to see
the relation we must express the time periods in terms of the absolute age of the Universe.

Despite the caution one must have in considering curve fitting, and the large inaccuracy of
data, made more dramatic by the small number of points among which to interpolate, it re-
mains a remarkable fact that, if expressed in terms of the astronomical, “absolute” time scale,
the main periods of the evolution of life seem to arrange into series of steps corresponding
to resonance thresholds of typical molecular and atomic energy series. This is by no means
underestimating the role possibly played by other factors, which may act as “disturbing”
agents, such as deep climatic changes due to solar phases, meteorites, supernova-neutrino
effects and so on. And certainly, in the history of life many “sub-periods” seem to follow a
more irregular path. But certainly, it is intriguing to see that, perhaps, the main steps are
something “regular” and absolutely “programmed”. Not by something external to the rules
of natural selection; simply, something intrinsic of the fundamental laws of physics.

According to the scenario discussed in Ref. [1], the Universe is expected to evolve toward
more entropic configurations, in which the minimal energy unit/step, which is also the size
of the “unit cell” of the phase space, decreases. This agrees with the fact that the duration
of the various phases decreases, making the more and more frequent the transition points.
It however also means that the changes, the mutations, which are to be expected, should
become less dramatic: more frequent, but also in the average smaller, steps.
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Figure 3: interpolation of human evolution with the curve y = axc.

Figure 4: interpolation of human evolution with the curve y = a(x − b)c.
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Figure 5: interpolation of the duration of the eras of figure 2 with the curve y = axc (3
values).

Figure 6: interpolation of the eras of figure 2 with the curve y = a(x− b)c (3 values). Notice
that here, for computational reasons, we shifted the first x value from 0 to 1
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Figure 7: interpolation of the eras of figure 2 with the curve y = axc (4 values).

Figure 8: interpolation of the eras of figure 2 with the curve y = a(x − b)c (4 values).
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